
CSCI-B 351: Introduction to Artificial Intelligence 2018

Cryptocurrency Trading Using Linear Regression
Models & Feed-Forward Neural Networks
Abe Leite, Dante Razo1

Abstract
This project is a cryptocurrency trader that is trained on historic Bitcoin data. There are multiple “players” that
use different models to predict when to buy and sell their holdings. The goal is to maximize profits; the player
with the most money at the end of a session is the winner. By pitting multiple models against each other, the
most effective one can be determined by seeing who won. Previous projects have focused solely on using neural
networks to model price trends, but real-world performance is also dependent on the ability to successfully
place and execute orders. This project’s full-market framework is able to achieve this with the ability to measure
real-world performance. A full high-level training framework was created for the TensorFlow library to trail these
models.

Keywords
linear regression — feed-forward — neural networks — tensorflow — bitcoin — cryptocurrency

1Computer Science; School of Informatics, Computing and Engineering at Indiana University, Bloomington, IN, USA

Contents

1 Background & Description 1

1.1 Constraints, Limitations & Restrictions 1
1.2 Challenges . 1
1.3 Variations . 2

2 Data Preprocessing 2

2.1 Handling Missing Values 2
2.2 Scaling . 2
2.3 Instance Creation . 2

3 Framework 2

4 Algorithms and Methodology 2

4.1 Training . 2
4.2 Agent Strategy . 2
4.3 Linear Regression . 2
4.4 Feed-Forward Neural Network 3
4.5 Time & Space Complexity 3
4.6 Alternative Approaches 3

5 Experiments and Results 3

5.1 Model Performance . 3
5.2 Bitcoin Trading . 3

6 Expansion & Improvements 3

7 Conclusion 4

8 Libraries 4

8.1 Python . 4
8.2 R . 4

References 4

1. Background & Description
Bitcoin, arguably the best-known cryptocurrency, was created
in 2009 with the goal of decentralizing financial transactions.
In recent years, it has gained notoriety as a tool to circumvent
law enforcement and as a quick way to get money. For this
project, it is analyzed simply as a digital currency.

The open-ended nature of the project prompt (“create
an AI”) allowed a great degree of freedom. This project
aims to compare and contrast different modeling techniques.
There are multiple “player” classes containing unique models.
Players are given a set amount of fiat currency (in this case, US
dollars) and are tasked with buying and selling their holdings.
The winner is the player with the most assets at market value
after a set time period.

This project was done entirely in Python and R. In all
diagrams and figures, red represents the linear regression
model and blue the feed-forward neural network.

1.1 Constraints, Limitations & Restrictions
The biggest constraint met during the development of project
is the time and expertise required to train models. In addition,
quality readily-available cryptocurrency data was sparse. We
elected to combine multiple sets to create a conglomerate
Bitcoin dataset. As a result, historical data only goes back to
April 2013, as sets had to be cut to align with each other.

1.2 Challenges
Due to the complexity of the TensorFlow library, it had to
be studied thoroughly. This wasn’t an easy task and took the
entirety of Spring Break and a few weeks after to learn. In
addition, the chaotic nature of the “super” dataset made it hard
to work with.

Cryptocurrency Trading Using Linear Regression Models & Feed-Forward Neural Networks — 2/4

1.3 Variations
Different cryptocurrencies have different histories. Bitcoin
was chosen because it was the best documented currency.
Ethereum was briefly considered, but was not the focus of this
project given the time constraint. Importing the ethereum.csv
dataset is easy in the loader class should we choose to analyze
it.

2. Data Preprocessing
Most data preprocessing was conducted in R. Modified datasets
were then exported as .csv files for easy referencing in Python.

2.1 Handling Missing Values
There were only 15 missing values in the Bitcoin dataset.
Generally, missing data is taken care of by imputing their
value or by removing them. Due to the small percentage
of missing points, the rows containing them were simply
removed.

2.2 Scaling
Feature scaling is a type of normalization that transforms
values such that {x ∈ R |0 < |x| ≤ 1}. The formula is as
follows, with X being the point to be normalized:

X ′ = X−Xmin
Xmax−Xmin

Finding the inverse function helps us undo the scaling. The
formula for this reversal is as follows:

Let R be the point to be reversed
Let m1 be the maximum of r’s column
Let m2 be the minimum of r’s column

R′ = R(m1−m2)+m2

2.3 Instance Creation
Training instances for one-day delay predictions were created

by collating three preceding days’ data columns with the
current day’s low-high price columns. Training instances for

two-day delay predictions, similarly, were created by
collating the three preceding days’ data columns with the

following day’s low-high price columns.

3. Framework
The project is modular in the sense that models can be easily
swapped for comparisons. For the purpose of this assignment,
only linear regression, manual (human-controlled), and feed-
forward neural network models were implemented.

The loader function loads any .csv file into the program.
The directory is defined but can easily be changed to accom-
modate differing file hierarchies.

Model is perhaps the most important class. Its subclasses
have several responsibilities, including defining variables,
models, and the training step. The class has utility functions
to handle training the defined models and applying them to

data. Finally, accepts a loss factory function to train based on
several different loss functions. One particular feature of the
Model class is its state interface. The state interface allows
the values of trained variables to be easily extracted and saved
as a numpy array, and later substituted in at will. It allows the
same tensorflow Graph and Session instances to easily service
multiple optimization aims. Its primary advantages over the
tensorflow Saver methods are its speed and its transparency.

The Agent class acts as a wrapper for models. There are
a few types, but the most important are informed agent and
tf model agent. The informed agent has access to the whole
dataset at once, and is aware of future price trends. This
allows it to maximize profits and make smart trades. It acts
as a ceiling for potential performance. The Model agent uses
“blind” models that have access to only the data provided by
the Market framework.

Market is responsible for feeding data to Agents that re-
quire regular updates and don’t have unlimited access to data
and executing their orders. The class also contains the demo
which will be featured at the course symposium.

4. Algorithms and Methodology

4.1 Training
Our models were trained on the period from April 2013 to July
2016, and validated on the period from July 2016 to August
2017.

A training framework, which we have termed the ’Jack
strategy’, was developed in which every frequency training
steps the loss would be evaluated on the validation dataset.
The top threshold scores were kept in a heap, and if no top
scores were registered within patience validations, the training
program would terminate.

The training step utilized a TensorFlow AdamOptimizer
in addition to an Adagrad optimizer. In order to get the best
estimates, mean squared error was used when calculating loss.
For lower bound estimates, a mean squared error was used
that multiplicatively scaled positive squared errors at a ratio of
4 times that of negative errors. For upper bound estimates, we
symmetrically used a mean squared error that multiplicatively
scaled negative errors at a rate of 4 times that of positive
errors.

4.2 Agent Strategy
Agents first estimated the difference between the next day and
the following day’s low and high prices in order to determine
whether it is a good time to buy or sell.

If it is favorable to sell, they take a low estimate of the
next day’s high price (so that their sell will execute) and sell
a ratio (confidence) of their crypto holdings at that price. If
it makes more sense to buy, they symmetrically take a high
estimate of the next day’s low price and buy at that price.

4.3 Linear Regression
The linear regression model used in this project is as follows:

y =W ∗ x+b

Cryptocurrency Trading Using Linear Regression Models & Feed-Forward Neural Networks — 3/4

4.4 Feed-Forward Neural Network
The feed-forward neural network contained a hidden layer of
10 neurons. The model is as follows:

h = sigmoid(W1 ∗ x+b1)
y =W2 ∗h+b2

4.5 Time & Space Complexity
The R script containing the code for data preprocessing has a
time complexity of O(n). This is due to the fact that every cus-
tom defined function only utilizes one for-loop at most. The
models defined are highly efficient, executing in constant time.
Model training, on the other hand, is a search optimization
problem that has no guaranteed optimal solution. Theoreti-
cal time complexity for the search problem approaches the
intractable O(2n).

Space complexity depends almost entirely on the opti-
mizer class implemented by the specific model subclass. The
AdamOptimizer used in this project’s implementation is very
efficient, storing less than 10 megabytes in RAM. It calculates
the loss gradients with respect to each of the model variables
and keeps track of a truncated history of these gradients. Be-
cause the dataset was relatively small, it was also stored in
RAM.

4.6 Alternative Approaches
An alternative model that attempted to predict the price change
between the next and and following days was also considered,
in addition to the raw prices of those two days. Based on the
errors with the current results, that seems to have been the
better strategy to take.

5. Experiments and Results

5.1 Model Performance
One interesting observation is that both models seemed to
agree more often with each other than with the price trends.
The agents performed well when capturing general trends in
price data. However, the predicted price changes could have
been more accurate.

The buy and sell prices represent the upper estimate of the
next-day low and the lower estimate of the next-day high, as
these are the optimal prices at which to buy and sell respec-
tively.

5.2 Bitcoin Trading
The benchmarks for agent performance were a completely
informed model and a model that simply held all its assets
in cryptocurrency. The former enjoyed incredible success by
netting over a thousand times the fiat currency it was given to
start out with over the testing period. The latter expectedly
performed worse and at times ended the simulation with less
money than it started with.

The agents performed reasonably well, with the linear
regression model tending to outperform the ’buy-and-hold’
model over the July 2016-August 2017 validation data. Possi-
bly due to the scaling model employed, the agents were unable
to adapt to unforeseen high prices during the August 2017-
February 2018 test period. Different training outcomes for
their n+1 and n+2 predictions (with n being the current day)
resulted in their predictions becoming virtually meaningless.
In order to implement the code on unseen price fluctuations,
the changes detailed in the next section were implemented
and/or considered.

The linear regression model performed slightly better to
the “hold” model, in which the starting fiat is immediately
traded for BTC, and only traded back in the last step. The
neural network model dramatically underperformed compared
to our expectations. In the simulations, it was more beneficial
to simply hold the money you start out with than to buy/sell
based on predictions.

6. Expansion & Improvements
In order to improve future performance, there are a few things
that could be changed or improved upon. First, trying new
regularization methods that are more resistant to novel price
ranges would have made for a better dataset to train the models
on. Second, having instance generation more sensitive to the
performance aspects of the models would have given them
more insight into how the price would change from tomorrow
to the next day. More time for model training and tuning
would have been appreciated and is a must for future revisions
of this project.

The biggest weakness of this project was the overgener-
ality of the training process. Different targets were trained
separately even though the relationship between them was

Cryptocurrency Trading Using Linear Regression Models & Feed-Forward Neural Networks — 4/4

the operant factor. For example, the n, n+1, and n+2 price
predictions with n being the current day. The neural network
should have achieved significantly higher performance, and it
is believed that this disconnect between the targets is one of
the reasons why it didn’t meet expectations. Linear regression
models generally serve as the baseline for model performance,
so the fact that the feed-forward network performed worse
shows that there is a lot of work that could be done to improve
it.

Using a recurrent neural network would have achieved
more favorable results than the feed-forward network imple-
mented in this project. Due to the nature of RNNs, it would
have been more resistant to sudden price fluctuations.

7. Conclusion
In conclusion, the project’s linear regression model and par-
ticularly its feed-forward neural network model didn’t per-
form as expected. Given more time to tune and train the
models, and a higher-quality dataset, the models would have
performed much better, or at least as expected.

The modular nature of the project allows for easy swap-
ping of models in the future, which means updates are easy
to implement. This makes the search for the best performing
model more streamlined.

8. Libraries
8.1 Python
• TensorFlow

• NumPy

• pandas

8.2 R
• caret
• dplyr
• e1071
• zoo

• ctv

• readr

• clusterSim

References

1. TensorFlow by Google Brain Team

2. Normalization (statistics) on Wikipedia

Special thanks to Mathias Legrand and Vel for creating this
LATEX template.

https://www.tensorflow.org/
https://en.wikipedia.org/wiki/Normalization_(statistics)

	Background & Description
	Constraints, Limitations & Restrictions
	Challenges
	Variations

	Data Preprocessing
	Handling Missing Values
	Scaling
	Instance Creation

	Framework
	Algorithms and Methodology
	Training
	Agent Strategy
	Linear Regression
	Feed-Forward Neural Network
	Time & Space Complexity
	Alternative Approaches

	Experiments and Results
	Model Performance
	Bitcoin Trading

	Expansion & Improvements
	Conclusion
	Libraries
	Python
	R

	References

