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Abstract
Porto Seguro, a Brazilian auto insurance company, is looking for the probability of a customer filing an insurance
claim in the next year. They provided anonymized training and testing datasets for Kaggle users to analyze. After
preprocessing the data, and selecting the most important features using an extra trees classifier, Naı̈ve Bayes
and XGBoost models were created for binary classification. The accuracy of both classifiers were compared,
and XGBoost outperformed Naı̈ve Bayes significantly for this specific use case.
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1. Problem and Data Description

The raw training data has 892,816 points with 58 features. The
data is separated into four different groups of related features:
ind, reg, car, calc. The datasets includes binary, categorical,
ordinal, and continuous data types. Missing values in the
dataset were represented by −1. There are 767,885 points in
the training dataset with at least one missing attribute.

This is a binary classification problem, which can be
solved using a myriad of classification models. Before using
any model, the data should be preprocessed to increase model

accuracy. The first step in preprocessing is deciding how miss-
ing values will be represented in the models. Two popular
methods are ignoring missing values and imputing with the
mean, median, or mode.

The second step of preprocessing is reducing the dataset
to its most meaningful members. This could entail remov-
ing columns with low variance, high correlation with other
features, and/or with too many missing values. The normal-
ization of features is also advisable to prevent the skewing of
feature importance.

A final thought to consider before preprocessing is overfit-
ting of the model. This is important because even if a model
performs well on the training data, it may not generalize well
to new data.

2. Data Preprocessing & Exploratory
Data Analysis

2.1 Handling Missing Values

All of the missing values in the provided training dataset were
converted from −1 to NA for readability and debugging.

The first step in working with missing values is recording
the percentage of missing values for each feature and then
removing features with a significant missing percentage. Over
40% of the values in ps car 03 cat and ps car 05 cat were
missing, as shown by the graph below titled “Columnwise
Percent NA”. The columns were subsequently removed.

It was decided that for categorical features, missing values
would be encoded as a separate category instead of imputing
with the mode. The remaining missing values were imputed
based off their feature type. Continuous and ordinal data were
imputed with the column mean. Binary data was imputed
with the column mode.
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2.2 Exploratory Data Analysis
A heatmap of the correlation matrix of the training data was
created for easy visualization.

In this heatmap, highly-correlated data is clearly visible
in groups. A large portion of the high-correlated data is bi-
nary, whose correlation does not carry as much weight as
continuous or ordinal correlation.

The two features with the highest correlation were
ps ind 12 bin and ps ind 14, which were positively corre-
lated.

One-hot encoding was briefly considered, but was not used
to go through with the technique due to the extra dimensions
it added.

2.3 Dimension Reduction
Dimension reduction was achieved by implementing feature
selection. The Extra Trees classifier algorithm was used for
the latter task.

The Extra Trees classifier returns the datasets’ feature
labels in order of importance. Models were created using the
first n important features. Their accuracy was plotted versus
the value of n, illustrated in the graph below titled “Mixed
Imputing”.

Rank Feature

1 ps car 13
2 ps calc 14
3 ps reg 03
4 ps calc 10

The graph shows that as n increases, the overall accuracy
of the model decreases. Therefore, it was decided that 4 is the
optimal number of features to maximize accuracy. The top 4
most important features are shown in the table above.

3. Algorithms and Methodology

3.1 Extra Trees Classifier
“Extra Trees” stands for Extremely Randomized Trees. The
algorithm works in a similar fashion to decision trees, but
picks a random cut point instead of picking based on informa-
tion gain. This allows the algorithm to rank features based on
their importance to the model.

3.2 Naı̈ve Bayes
The Naı̈ve Bayes classifier is a simple probabilistic classi-
fier which utilizes Bayes’ theorem and assumes feature in-
dependence. Naı̈ve Bayes was chosen for its versatility and
simplicity.
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3.3 K-Fold Cross-validation
The best Naı̈ve Bayes classifier was selected and run through
5-Fold cross-validation. This is important in determining
whether or not the model will generalize to new data or is
overfitted to the training data. The results are shown in the
following table:

Fold % Accuracy

1 18.030
2 17.997
3 17.983
4 17.886
5 18.031

The extremely low accuracy of the Naı̈ve Bayes models
indicated that they were indeed overfitted and unsuitable for
this dataset.

3.4 XGBoost
XGBoost stands for Extreme Gradient Boosting. Gradient
boosting is a machine-learning algorithm where many weak
learners — typically decision trees — are combined to build
a stronger model. This library was chosen as it is considered
one of the most powerful classifiers.

4. Experiments and Results

4.1 Experiment 1: Naı̈ve Bayes
With n = 4, the predetermined optimal number of features,
the accuracy of the best Naı̈ve Bayes classifier on the training
set was 96% and found to be overfitted. When applied to new
data, the accuracy dipped to 18%.

4.2 Experiment 2: XGBoost
Using the XGBoost library, the models were 5.4 times more
accurate at predicting new data than the Naı̈ve Bayes models.
The library uses gradient boosting to predict a target variable
using multi-dimensional training data. The XGBoost classifier
used a max depth of 2 and ran for 10 rounds.

4.3 Results
Submitting the labels generated by Naı̈ve Bayes classifier to
Kaggle returned a normalized Gini coefficient of 0.18605.

Using XGBoost for the submission, Kaggle returned a
normalized Gini coefficient of 0.24039.

5. Summary and Conclusions
After preparing the data and removing unimportant features
using an Extra Trees classifier, two models were created for
the purpose of binary classification. Both classifiers were
compared based on accuracy, and XGBoost outperformed
Naı̈ve Bayes significantly for Porto Seguro’s specific use case.

In conclusion, XGBoost is much more effective in this use
case at classifying data than Naı̈ve Bayes. The accuracy of
96% for the former was 5 times greater than the 18% accuracy
of the latter.

6. Libraries

6.1 Python
• NumPy

• pandas

• scikit-learn

• matplotlib

6.2 R
• xgboost

• ramify

• FSelector

• zoo

• caret

• DiagrammeR

• reshape2

• mlbench

• gower
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